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A new experimental technique, 'polarization-modulated laser Raman scattering' (PMLRS), is presented 
for the study of the dynamics of polymeric materials subjected to transient flows. A detailed analysis of 
the experiment based on Jones-Mueller matrix calculus is presented. Jones and Mueller matrices that take 
into account the integrated effect of the deformed sample's birefringence are developed for a Raman 
scattering element, using either the 0 ° or 180 ° scattering geometries. To test the predictions of the theory 
a Raman scattering system, based on high-speed phase modulation (50 kHz) of the incident light coupled 
with phase-sensitive detection, has been developed. This system is also capable of simultaneously measuring 
birefringence. Single-step reversal extension and step strain experiments were conducted using a poly- 
isobutylene melt. Experiments were done using the Raman scattered light associated with the v stretching 
vibration of C-H groups present in the specimen. The results obtained indicate that the Raman signal 
ratios all depend on the second- and fourth-order moments of the orientation distribution function of 
polymer segments and on the sample's birefringence. 
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I N T R O D U C T I O N  

Spectroscopic, microrheological techniques that are 
capable of isolating the dynamics of specific components 
in a polymer blend can provide invaluable information 
about the relationship between the microstructure and 
rheology of these materials. To date, methods such as 
infra-red dichroism, depolarized fluorescence and n.m.r. 
have been used for this purpose. Recently, following the 
initial work of Bower 1, polarized laser Raman scattering 
has been applied successfully to the study of molecular 
orientation induced in polymeric materials by stretch- 
ing 2-4 and by extrusion 5. In these studies the Raman 
spectra of the deformed polymer specimen are collected 
using various combinations of the polarization direction 
of the incident and scattered light relative to the 
stretching direction, as well as various scattering 
geometries. The measured spectral intensities are related 
to the principal eigenvalues of the Raman scattering 
tensor in a molecule-fixed coordinate system through the 
orientation distribution function of molecular segments. 
Using this procedure both second-order ((P2 (cos 0) )  ) 
and fourth-order moments ( (P4 (cos 0 ) )  ) of the segment 
orientation distribution function have been successfully 
determined. However, because the modulation of the 
polarization states of the incident and scattered light was 
manual, the required measurements were rather tedious 
and slow, making polarized laser Raman scattering 
unsuitable for studying time-dependent variations in 
polymer segment orientation. In this paper we present 
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the theory and preliminary experimental data for a 
high-speed modulation scheme that makes it possible to 
study time-varying molecular orientations using Raman 
scattering. This technique will henceforth be referred to 
as 'polarization-modulated laser Raman scattering' 
(PMLRS).  Compared to other spectroscopic methods 
that have seen recent application in rheometry, PMLRS 
offers important advantages, such as high spatial 
resolution, greater flexibility in both the nature and sizes 
of the polymer specimens that can be studied and the 
potential ability to determine both second- and 
fourth-order moments of the segment orientation 
distribution function. The latter information is important 
in the dynamics of highly extended chains and multi- 
component polymer systems for which Gaussian statistics 
may no longer apply. 

REVIEW OF THE MEASUREMENT OF 
POLYMER LIQUID DYNAMICS 

Although PMLRS can be used to study the dynamics of 
any transparent polymeric liquid, in this study we apply 
this method to a polyisobutylene melt of amorphous, 
flexible chains. The description of the dynamics of even 
this simple class of materials is challenging and is treated 
thoroughly in several recent books (Doi and Edwards 6, 
Larson 7 and Bird et  al. 8 ). Briefly, the goal of such theories 
is to predict the conformation of a chain such as the one 
depicted in Fioure 1. 
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Figure 1 

Rn 

Bead-rod model of a flexible chain 

Here the chain is represented as a sequence of beads 
connected by rods (or springs) that are located in space 
by the set of vectors {R,}, where the index n runs 
from 1 to N, N being the number of statistical sub- 
units per chain. The conformation of the chain is then 
described through a probability distribution function, 
~({R,} ) dR1 . . .  dR, . . .  dR N, which prescribes the prob- 
ability that the chain will have a given conformation. 
Once this function is determined, bulk properties such 
as the stress and refractive index tensors can be 
calculated. A primary motivation of the present 
development is to provide measures of the moments of 
this distribution function that can be used to advance 
the development of molecular theories of complex, 
multicomponent systems. In the following sections, the 
most commonly applied dynamical measurements will 
be described and the theory of PMLRS developed to 
demonstrate how these moments can be measured 
experimentally. 

The stress tensor 
The most commonly measured bulk property associated 

with the dynamics of polymer liquids is the stress 
tensor. The polymer contribution to the stress tensor is 
calculated by considering the stress exerted by polymer 
segments on planes within the fluid. By properly 
projecting these forces onto such planes, it can be shown 
that the stress tensor will be proportional to averages 
over the probability distribution function in the form of 

( F , R , ) ,  where F, is the force exerted by bead n. When 
Gaussian chain statistics apply, this force is linear in the 
vector R, and the stress tensor is: 

3ck T R R 
TPj - bE ( i j )  (1) 

where c is the number concentration of polymer chains, 
b is the length of a statistical subunit and the angular 
brackets represent an average over the probability 
distribution function. The vector R = ~ R, shown in 
Figure 1 is the end-to-end vector of the chain. The 
second-order moment, ( R R ) ,  therefore, is an important 
dynamical quantity in polymer melts. 

The refractive index tensor 
Another bulk property that is often studied is the 

refractive index tensor, nq. This is related to the 
polarizability tensor, ~j, by the Clausius-Mossotti  
equation 6. The polarizability tensor of a polymer liquid 
will be the sum of the segmental polarizabilities, averaged 
over the conformational distribution function and can 

be shown to be: 

~ i j = ~ b i j + C ~  ( a l - - ~ 2 ) ( R I R j >  (2) 

where (al - ~2 ) is the intrinsic anisotropy in the polariz- 
ability of a polymer segment and ~ is the mean 
polarizability. The fact that both the stress and polariz- 
ability tensors are proportional to the second-moment 
tensor, ( R R  >, leads to a linear relationship between the 
optical and mechanical responses of many polymer 
liquids, known as the stress-optical rule. This states that 
the refractive index tensor is simply related to the stress 
tensor by : 

nij = Czij (3) 

where C is the stress-optical coefficient and is: 

2rt (n 2 + 2) 2 
C =  - -  (~, - ~ 2 )  (4) 

45kT n 

Here n is the mean refractive index of the system. 
This relationships holds for the intrinsic contribution 

to the refractive index tensor when Gaussian statistics 
apply. Form effects, due to scattering of light, will not 
follow this relationship. It is important to note that the 
stress-optical relationship will apply to both the real and 
imaginary parts of the refractive index tensor. That is, 
either birefringence (anisotropy in the real part of the 
refractive index) or dichroism (anisotropy in the 
imaginary part) measurements will obey the stress- 
optical rule. 

Raman scattering by polymer liquids 
Raman scattering refers to scattered radiation that 

arises from the interaction between normal vibrational 
modes of a molecule and radiation-induced oscillating 
electric dipoles. The electric vector of the scattered light 
is related to that of the incident light by: 

Eis = ~ijEjo (5) 

where Ejo is the electric vector of the incident light and 
~1i is the Raman tensor of a scattering element; index 
notation is implied. 

If the incident and scattered light have polarizations 
oriented along the unit vectors l'i and l~, respectively, then 
the observed intensity of the scattered light is given by: 

! t t I = I o liljotlj (6) 

where I 0 is a constant dependent on the incident light 
intensity and instrumental factors. 

If the frequency of the incident light is removed from 
an absorption frequency of the sample the classical theory 
of Raman scattering applies. This theory predicts the 
following relationship between the Raman tensor and the 
polarizability tensor 9 : 

°~iJ = \ OQkJ o Qk (7) 

where Qk is a normal mode associated with the kth 
vibrational mode and the subscript 0 refers to differentials 
of the polarizability tensor, cqj, about equilibrium 
configurations. The Raman tensor can therefore be 
expected to be a function of the end-to-end vector, R, of 
a polymer chain. In general, this tensor will have the 
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following form for small deformations: 

~j  = ~1(6 u + eR~Rj) (8) 

where e and q are scalar constants. This result can be 
inserted in equation (6) to obtain a prediction of the 
Raman scattered light intensity as a function of polymer 
chain conformation. From equations (6) and (7), it is 
clear that the Raman experiment will produce measures 
of the fourth-order moment, ( R R R R ) ,  as well as the 
second-order moment, ( R R ) .  

n 
inc red 
figl 

h d ILl 

Figure 3 Model ofa birefringent sample subject to Raman scattering 

POLARIZATION-MODULATED LASER RAMAN 
SCATTERING : THEORY 

Figure 2 is a schematic diagram depicting the geometry 
of a typical Raman scattering experiment employing 
polarization modulation. In this case modulation is 
accomplished by a photo-elastic modulator (PEM) 
oriented at 45 ° with respect to the x axis. Preceding that 
element is a polarizer oriented parallel to the x axis. The 
PEM induces a sinusoidal retardation of the phase of 
the transmitted light polarization: 

6~,EM = A sin(~ot) (9) 

where A is the adjustable peak-to-peak retardance and 
co is the fixed frequency of the modulation (typically of 
the order of 50 kHz). 

To calculate the intensity of the Raman scattered light 
for this or any experimental arrangement, equation (6) 
can be used. However, it is often more convenient to use 
Jones or Mueller calculus 1°. With these schemes, the 
electric vector following a train of optical elements 
numbered from m = 1 to M is: 

EM = ]MJM-1 ' ' 'J1 eo (IO) 

or  

S M = MMMM_ 1 ... M 1 S o ( l I )  

where Emand Sm are the electric and Stokes vectors 
describing the polarization of the light exiting the mth 
optical component in the train. The incident light 
polarization is described by E 0 and So. For perfectly 
polarized light, the Stokes vector is directly related to 
the Jones vector and has components (for light 
propagating along the y axis): 

S = ((IExl 2 + [Ez[2), (IExl z - [Ez]2), 
2 Re(E'E=),2 I m ( E * E z ) )  T (12) 

The matrices Jm and M,, are the Jones and Mueller 
matrices that describe the linear transformation of the 
electric vector induced by component m. These two 

laser source photo-elastic ~ 4 z ' ~  
modulator 

Figure 2 Schematic of the basic polarization-modulated Raman 
scattering experiment 

matrices are related in a simple way, although it is 
generally easier to develop the Jones matrix for a given 
optical element and then convert it to a Mueller matrix. 
The Mueller matrix calculation has the advantage of 
producing observable quantities directly. Since it involves 
the Stokes vector, it can also describe light that is partially 
polarized. When the Jones calculus is used, the intensity 
of light must be determined using I = I E. E*[. Jones and 
Mueller matrices for polarizers and photo-elastic 
modulators are found in the Appendix. The appropriate 
matrices for Raman scattering from oriented samples are 
developed here for the particular case of zero-angle (or 
180 °) scattering. 

The calculation of the Jones and Mueller matrices for 
a Raman scattering element is complicated by the fact 
that invariably the Raman scattering site is situated 
within a birefringent material. Since scattering sites will 
be distributed uniformly throughout the thickness of the 
specimen, one has to account carefully for the integrated 
effect of the birefringence. 

The model used in this calculation is pictured in 
Figure 3. Here light of wavelength 20 is incident on a 
sample of thickness d. After penetrating the sample a 
distance y, the light is scattered by a Raman scattering 
element and exits with wavelength 21. Multiple scattering 
events are neglected and the oriented sample is taken to 
have a birefringence An that is independent of 
wavelength. Given the relatively small wavelength 
changes associated with Raman scattering and the weak 
wavelength dependence of the real part of the refractive 
index in the visible spectrum, this is a reasonable 
assumption. The principal axes of the real part of the 
refractive index tensor in the (x, z) plane are taken to be 
coincident with the x and z axes, although this restriction 
can be easily removed. 

If light of polarization E o enters the sample, the electric 
vector of the Raman scattered light exiting the sample is 
given by : 

'fo 
× dyleXp[ify(d 0 y)/2d] 0 ] 

exp[(-i)67(d - y)/2d] 

×~'x ~,',l ~exp[i6~/2't] 0 ] 
L~, ='=JL 0 exp[(- i )fy/2d]  E° 

=JR . . . .  Eo (13) 

where : 

3 = 2~z And~2 o ~ = 20/21 (14) 

After carrying out the integrations in equation (13), 
the elements of the Jones matrix for this particular 

3576 POLYMER, 1992, Volume 33, Number 17 



Polarization-modulated laser Raman scattering. L. A. Archer et al. 

scattering geometry are found to be: 

J = - - ~ i 2 e x p  ( - i ) ~  1 -  S 

(15) 

J12 = ~xz exp ( - i )  ~ fl S 

J21 = e;~= exp i ~ S 

The parameter fl is given by: 

fl = (A1 - -  )'0)/)'1 (16) 
and is normally a small number. The function 
S(~) = (sin ~)/~. The components of the Mueller matrix 
for this sample are easily calculated from the Jones matrix 
components and are tabulated in the Appendix. Once 
the Jones and Mueller matrices are known, the light 
intensity for a given experiment can be easily calculated 
using either equation (10) or ( 11 ). 

To demonstrate how this is done, let us analyse the 
PMLRS experiment depicted in Figure 4. This 
experiment has been built in our laboratory and is 
described in detail in the next section. In this case the 
intensity measured by the photomultiplier tube (PMT) 
is determined to be: 

I / I  o = Rd~ + R~,, sin[A sin(cot)] 

+ Rzo, t cos[A sin(cot)] (17) 

where : 

~((~=~) + (C=2))$2( f l6 /4)  g d  c : 1 t2 

+ (~,2)$2(6(2 - fl)/4) (18) 

R,~ t = ( ~'xxO(=) { SZ(f l6/4 ) sin[6(1 -- fl/2)]} 
t2 + ( ~ = ) [ S 2 ( 6 ( 2 - f l ) / 4 ) s i n ( f 1 6 / 2 ) ]  (19) 

R2wt 1 [ / ,2 ,2 = (O~zz))S2(fl(5/4) ~ , , ~ = )  - ( 2 0 )  

The time-dependent terms arising from the photo- 
elastic modulation can be expanded in the following 
Fourier series : 

cos[A sin(cot)] = Jo ( A ) + 2 ~ J2, ( A ) cos ( 2ncot ) (21) 
n = l  

sin[A sin(cot)] = 2 ~ Jz ,+I(A) sin[(2n + 1)cot] (22) 
n=0 

The modulator can be adjusted so that its amplitude 
leads to the condition J o ( A ) =  0. Rewriting equation 
(17) so that only the leading-order terms in the Fourier 

Ar + laser 

PEM 
O m  

R sample splitter ~ [ 

' t--~ I I 
polarizer 

double monochromator 
& photomultiplier 

photodetector (Raman scattering) 
(birefringence) 

Figure 4 Experimental arrangement for simultaneous measurement 
of birefringence and PMLRS 

expansion are retained leads to" 

I 
- ¼[Rat + 2J1 (A)Ro, t sin(cot) 

r/2Io 

+ 2J2(A)R2o, ,cos(2cot)]  (23) 

The averages of the squares of the components of the 
Raman scattering tensor listed in equations (18) to (20) 
can be related to moments of the orientation distribution 
function using equation (8). Making this substitution 
and retaining terms up to O(fl) leads to the following 
expressions : 

Rdc = 1 + ~((x 2) + (z2>) + lE2((x4) + (z4))  

+ e2S2(a/2){ 1 + fl[1 - ½6 c o t ( a / 2 ) ] } ( x 2 z 2 )  

(24) 

R~,, = (sin 6 - ½f16 cos 6) 

x [1 + ~((x 2) + ( z 2 ) ) +  e2(x2z~)] 

+ ½6Sa f l (a /2 ) t eZ(xZz2) )  (25) 

R2~ , = g ( ( x  2 )  --  ( z 2 ) )  + ½ g Z ( ( x 4 )  --  ( 2 4 ) )  (26) 

Similarly the intensity measured by the birefringence 
detector can be shown to be" 

I / I  o = Rd~,b + 2JI(A)R,,,, ,  b sin(cot) (27) 

where : 
Rac,b = ~ (28) 

Ro,,,b = ¼ sin 6 (29) 

The ratios Ra¢, R~,,, Rzot,  Rde,b and R~ot, b can  be 
determined with the use of low-pass filters and 
phase-sensitive detectors interfaced with lock-in ampli- 
fiers, locked to sin(cot) and cos(2cot). It is apparent that 
the birefringence of the sample must be simultaneously 
measured in order to analyse the results properly. 

The experiment described above is only one example 
of a configuration that can be analysed in this way. 
Similar expressions can be derived for the case where the 
scattered light is measured along the z axis, for example. 
Various orientations of the analysing polarizer can also 
be considered. For example, let us consider an experiment 
where no modulation is applied and the backscattered 
Raman light is observed through a polarizer oriented at 
an angle of 90 ° relative to the polarization direction of 
the incident light. It is straightforward to show that in 
this case the intensity is: 

q2I 0 4 ( 0 / 2 )  2 J 

x { 1 + fl[1 - ½6 c o t ( 6 / 2 ) ] } ] }  

(30) 

which again indicates that it is necessary to take into 
account the integrated effect of the sample's birefringence 
in analysing even this relatively simple experiment. It is 
clear, however, that for very small values of the 
retardation the predicted intensity becomes identical to 
the intensity that would be calculated if the birefringence 
of the sample is neglected. On the other hand, if the 
analyser orientation is 0 ° relative to the polarization 
direction of the incident light, the intensity is determined 
to be : 

I/~12Io = ½(1 + 2g(x 2) + g 2 ( x 4 ) )  (31) 
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In this case it is evident that the birefringence of the 
specimen has no observable effect on the Raman scattered 
light. 

EXPERIMENTAL 

Apparatus 
To test the feasibility of PMLRS, the experiment 

shown in Figure 4 has been built. It consists of an argon 
ion laser (Lexel) operating at approximately 120 mW of 
power at 514nm. Polarization modulation is accom- 
plished using a polarizer and photo-elastic modulator 
(Hinds International) at a relative orientation of 45 °. 
Flow is generated either by stretching the sample between 
the jaws of a simple stretching cell, or by shearing it 
between glass plates in a parallel-plate flow cell. 
Following the sample, the light is passed through an 
analysing polarizer oriented at 45 ° and then split using 
a glass window held at a small angle of incidence. The 
transmitted light is sent through a narrow-band 'notch'  
filter (Omega Optical) that removes the laser line, and 
then through a Spex 1680-SS double monochromator. 
The intensity is then measured using a R928 photo- 
multiplier tube in a cooled housing (Thorn EMI). 

The light reflected by the beam splitter is used to 
measure the birefringence of the sample, which, as 
demonstrated previously, is required for the analysis of 
the Raman scattering signals. The signals from both 
detectors are sent simultaneously to low-pass filters and 
lock-in amplifiers. The former permits the d.c. signals to 
be measured, while the latter determines the relevant 
Fourier components of each intensity signal. 

Materials and experimental protocol 
Using the experimental system described in the 

previous section, a number of flow experiments were 
conducted. The polymer sample used was a polyiso- 
butylene melt with an average molecular weight of 
380000. This polymer is transparent and is a 
room-temperature melt, although the molecular weight 
is sufficiently large so that it could be handled much like 
an elastomer. Two types of experiments were performed, 
both using the Raman scattered light associated with the 
symmetric stretching vibration of the C - H  groups 
present in the sample ( ~  2960 cm-1 or ~ 604 nm). The 
Raman spectrum for this material is shown in Figure 5. 

2 .  

- t  

. . . .  i . . . . . . . .  i . . . . . . . .  i . . . . . . . .  i . . . . . . . .  , . . . . . .  

520 
Wavelength ( n m )  

Figure 5 Raman spectrum of polyisobutylene 

In the first case, uniaxial step strain deformations of 
samples in the form of sheets, 4.0 mm thick, were applied 
(at room temperature) by simply fastening the specimen 
between one stationary and one movable clamp of a 
simple stretching cell. The drive used consisted of a 
stepper motor that could be precisely controlled to 
subject the sample to a specified strain. The stretching 
protocol consisted of two successive step strains, the 
second being in the opposite direction to the first, with 
a delay time of 12 s between the two displacements. Five 
signals were recorded simultaneously as a function of 
time: Rde , Ro, t, Rzcot, for the Raman scattering 
measurement, and two similar signals for the birefringence 
measurement. The second type of experiment consisted 
of a step strain deformation where the sample was 
sandwiched between parallel glass plates, one fixed and 
one movable, in a shear flow cell. The sandwiched sample 
was approximately 0.75 mm thick. Step strain deformations 
were accomplished by moving one of the plates relative 
to the other. The drive consisted of a stepper motor. In 
this case the sample was heated to 80°C and subjected to a 
single step strain of 100%. 

Results and discussion 
Figures 6a through 6d summarize the results 

obtained for the stretching experiments. Here the signal 
ratios following step reversal extensions for a number of 
stretch ratios (e) are plotted as a function of time. From 
Figure 6a it is evident that the response of Rac is flat 
and independent of the stretch ratio. This is expected 
since, for the stretch ratios employed, the orientation- 
independent part of the Raman tensor is much larger 
than the orientation-dependent part. This is confirmed 
by the fact that the response of Ro, t is very similar in 
form to the birefringence response (Rbi,e), which, from 
equation (25), is only expected if the above is true, given 
that fl is a small number (fl = 0.15 in this case). This 
similarity is particularly evident in the oscillations in both 
of these signal ratios at 24% strain. These are a 
manifestation of the fact that the retardation due to 
birefringence in the sample (6 defined in equation (14)) 
becomes greater than re/2. On the other hand, the 
response of R2,o t is independent of the sample's 
birefringence, which is expected from equation (26). 
Moreover, since this signal depends, to leading order, on 
the anisotropy of both the second-order and fourth-order 
moments of the orientation distribution function, it is a 
direct measure of the time dependence of these moments. 
However, even though it is in principle possible to solve 
equations (24) through (26) simultaneously, to obtain 
signal ratios that reflect the independent time dependence 
of each of these moments, this is not possible in this case. 
The reason for this is that both the measured Rdc and 
R,ot signals are independent of the moments. In its present 
form, the experiment can only provide the fourth-order 
moments if the O(e) and O(e 2) terms in R,ic and Ro, , are 
measurable. At the strains imposed in these experiments, 
these terms are too small to be determined. A possible 
solution to this problem, which we are currently 
pursuing, is the development of modulation schemes that 
would eliminate the dependence of R~,, on the 
orientation-independent part of the Raman tensor. 

It is also noteworthy that R2~, t does not oscillate at 
24% strain. This is expected since it does not involve a 
trigonometric dependence on the anisotropy as in the 
case of the birefringence measurement. This represents 
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Figure 6 Plots of signal ratios following single step reversal ranging from 0.5% to 24% : (a) Rdc, (b) R~,t, (c) R2~ n and (d) Rbirf 

an important advantage of PMLRS over birefringence 
and dichroism measurements for polymer melts where 
large retardations and extinctions frequently occur. 
Multiple orders in retardation can make the unam- 
biguous determination of birefringence very difficult and 
time-consuming. 

The results obtained for the step strain experiments 
are summarized in Figures 7a through 7e. Here the signal 
ratios following a single step strain deformation of 100% 
are plotted as a function of time. From Figure 7a it is 
evident that the response of Rdc is again fiat, suggesting 
that even at this relatively high strain the moments are 
still much smaller than the orientation-independent term 
(equation (24)). Comparing the strain used in this 
experiment with the strain at which the birefringence goes 
through orders, in the extension experiments, one is 
inclined to expect Rbirf and R,ot also to go through orders. 
However, Figures 7b and 7d indicate no such behaviour. 
The reason for this is that the thickness of the sample 
used in this experiment is much smaller than that used 
in the extension experiments; the retardation will be 
correspondingly smaller. Single-exponential fits to R,~ t 
and Rbirf yield long-time characteristic relaxation times 
of 25.3 s and 25.7 s respectively. The agreement between 
these values is quite good, which is not surprising because 

from equation (25) and Figure 7a we expect the Rot signal 
to be dominated by the response of the sample 
birefringence to the step strain deformation. Figure 7e is 
a plot of the retardation 6 (recovered from Rbirf ) as a 
function of time. The retardation is proportional to the 
anisotropy in the second-order moments and is therefore 
expected to yield similar information to R2,o , about the 
relaxation dynamics. Single-exponential fits to R2ot and 
the retardation yield characteristic relaxation times of 
21.6 s and 24.8 s respectively. Given the relatively poor 
signal-to-noise ratio of the R2~ot signal, the agreement 
between these two relaxation times is quite reasonable. 

CONCLUSIONS 

These results demonstrate that PMLRS can successfully 
produce measures of the time-dependent orientation of 
molecular segments in polymer liquids. In addition, 
because it is a spectroscopic technique, it can also provide 
information about the orientation dynamics of specific 
segments on a polymer chain, or specific components in 
a blend of dissimilar polymers. The theoretical approach 
developed accurately describes what is observed experi- 
mentally. However, at this point it is not clear whether 
it will be possible to determine the relaxation of the 
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F i g u r e  7 P l o t s  o f  s i g n a l  r a t i o s  f o l l o w i n g  s i n g l e  s t e p  s t r a i n  o f  1 0 0 %  : 

( a )  R d c ,  ( b )  R o t ,  ( c )  R 2 ~ , t  a n d  ( d )  R b i , f ;  ( e )  r e t a r d a t i o n  

second-order and fourth-order moments of the orientation 
distribution function independently of each other, 
without deforming the sample beyond the limits capable 
of being described by current viscoelasticity theories. 
Here, it is instructive to point out that previous studies 
that have been successful in determining both second- and 
fourth-order moments have employed stretch ratios 
ranging from 100% to 5 0 0 0 / 0 2 . 3  . 

It is also possible that other optical arrangements (such 
as 90 ° scattering) might be advantageous. Certainly 
scattering geometries other than the forward scattering 
example presented here need to be considered when 
deformations other than simple uniaxial extension are 
applied. If simple shearing deformations are used, for 
example, it will be necessary to consider both forward 
and 90 ° scattering with the incident light propagating 
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either along the gradient axis (the y axis) or along the 
vorticity axis (the z axis) since each case will provide 
different combinations of second- and fourth-order 
moments. If the shear flow is defined by the velocity field 
u = (~y, 0, 0), forward scattering with the incident light 
sent parallel to the y axis will provide moments that are 
combinations of (x2) ,  (g2), (X 4) and (z4) .  If the 
scattered light is measured along the z axis, on the other 
hand, moments of the form of ( x y )  and (x2y 2 ) will be 
measured along with moments that are combinations of 
(x  2 ), (y2) ,  ( x  4 ) and (y4) .  As indicated previously, 
various modulation schemes will also be investigated as 
well as different designs for the analysing optics. 
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APPENDIX 

Jones matrices 
Ideal polarizer oriented at e: 

c: c.s 4 

where c~ = cos(a) and s~ = sin(a) etc. 

Birefrinoent element with retardation 6 oriented at e: 

(Co/27ic2,So/2 - - i s2~so /2~  

-- IS2aSo/2 CO/2 -~ 1C2~tS0/2,/ 

where for a PEM, 6 = A sin (mt), co being the modulation 
frequency. 

Mueller matrices 
Ideal polarizer oriented at e: 

1 

2 \ S o "  c2=S2"o st,0 

Birefringent element with retardation 6 oriented at e: 

c~  + s~c o c2~s2~ (1 - ce) s2~s o 

-- S2etS O C2atSo C6 / 

Mueller matrix components for Raman scattering 
element in birefrinoent medium (0 ° scattering; direction 
of  propagation y): 

M,I  = tlZ{SZ(fl6/4)[1 + e(<x2> + (z2>) 

+ ½ ~ 2 ( < x 4 >  + < z 4 > ) ]  

+ $2(6(2 - [3)/4)eZ<x2zZ>} 

M12 = qz{s2(f la/4)[e(<x2> - <z2>) 

+ 21-g2((Xa'> -- ( Z 4 } ) ] }  = M21 

M13 = M31 -- M14 = M41 = 0 

M22 = ~12{$2(fl6/4)[1 + e((x25 + ( z Z ) )  

+ ½~2(<x'> + <z~>)] 

- $2(6(2 - f l ) /4)eE(xZz2)}  

m z a  = ma= = m=~ = m , 2  = 0 

M33 = t l 2 { S 2 ( f l r / 4 ) c o s ( 6  - [33/2) 

x [1 + e((x  2) + (z2))  + eZ(x2z2)] 

+ SZ(6(2 - [3)/4)cos (f lr/2)e.Z(xZza)} 

M,3 = -M34 = n~{$2([36/4) sin(6 - [36/2) 

x [1 + ~((x 2) + (z~))  

+ ~=(x2z~)] 

+ Sa(6(2 - /~) /4 )  sin([36/2)ea(x2zZ )} 

M , ,  = rtZ{Sa([36/4) cos(6 - [33/2) 
× [1 + e ( ( x  2 ) "~ ( Z 2 ) )  + E2(X2Z2)]  

- $2(6(2 - [3)/4)cos([36/2)eZ(x2z=)} 

where S(x )  = (sin x ) / x  and [3 = (21 - 2o)/21 ; 2o being 
the wavelength of the incident light and 21 the wavelength 
of the Raman scattered light. 
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